首页> 外文OA文献 >Background prior-based salient object detection via deep reconstruction residual
【2h】

Background prior-based salient object detection via deep reconstruction residual

机译:通过深度重构残差的基于背景先验的显着物体检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand designed features and their distinctiveness measured using local or global contrast. Although these approaches have shown effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learnt in an unsupervised and bottom up manner. Afterwards, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations on three benchmark datasets and comparisons with 9 state-of-the-art algorithms demonstrate the superiority of the proposed work.
机译:近年来,从图像中检测出显着物体越来越引起人们的研究兴趣,因为它可以极大地促进广泛的基于内容的多媒体应用。基于前景凸显区域在特定上下文中是独特的假设,大多数常规方法都依赖于许多手工设计的特征,并使用局部或全局对比度来测量其独特性。尽管这些方法已显示出有效的处理简单图像的能力,但是它们的能力有限可能会在处理更复杂的图像时引起困难。本文提出了一种显着性检测的框架,方法是先对背景建模,然后再将显着对象与背景分离。我们使用深度学习架构开发堆叠式去噪自动编码器,以对探索潜在模式并以无人监督和自下而上的方式学习更强大的数据表示的背景进行建模。然后,我们将显着对象与背景的分离公式化为测量深度自动编码器的重构残差的问题。对三个基准数据集的综合评估以及与9种最新算法的比较证明了所提出工作的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号